Main Article Content

Abstract

Objectives: The aim of this study was to evaluate the Entrance Surface Dose (ESD) in patients undergoing two routine most frequent diagnostic radiographic procedures (frontal Chest X-ray (CXR), frontal and lateral views of the lumbar spine X-rays (LSXR)) in three radiology units


Material and Methods: The ESD was determined by calculation using the Davis formula. The 3rd quartile of ESD were selected as Local Diagnostic Reference Level (LDRL) and compared to existing data for each specific examination.


Results: The result reveal LDRL ranging between 0.09 - 0.34 mGy, 2.8 – 7.79 mGy and 6.9 – 13.39 mGy respectively for frontal CXR, frontal LSXR and lateral LSXR. Important variability of the exposure parameters within and between radiologic units was noted. The LDRL in this study were lower than international recommendations for frontal CXR and frontal LSXR


Conclusion: The wide variability of exposure parameters highlights the contribution of radiographer in patient dose management. This study brings out the need of establishing national DRLs, heightening awareness of radiographers on the optimization of patient’s doses during routine procedures



RÉSUMÉ




Objectifs : Le but de cette étude était d'évaluer la dose d’entrées  de surface (DES) chez les patients subissant deux procédures radiographiques diagnostiques de routine les plus fréquentes : radiographie thoracique incidence de face, radiographie du rachis lombaire incidence de face et de profil dans trois services de radiologie


Matériel et méthodes : La DES était déterminée par calcul en utilisant la formule de Davis. Le 75e percentile de la DES était considéré comme Niveau de Reference Diagnostic Local (NRDL) et comparé aux données existantes


Résultats : Cette étude révèle des NRDL compris entre 0,09 - 0,34 mGy, 2,8 - 7,79 mGy et 6,9 - 13,39 mGy respectivement pour les radiographies du thorax, du rachis lombaire de face et de profil. Nous avons noté une importante variabilité des paramètres d'exposition pour les mêmes examens au sein et entre les unités radiologiques. Les NRDL dans cette étude étaient inférieurs aux recommandations internationales pour les radiographies du thorax et du rachis lombaire de face


Conclusions : La grande variabilité des paramètres d'exposition met en évidence la contribution des techniciens de radiographies à la gestion des doses de radiations administrées aux patients. Cette étude ressort la nécessité d’établir des NRD nationaux et de sensibiliser les radiologues et techniciens de radiographie à l’optimisation des doses aux patients lors des procédures de routine


 



Article Details

How to Cite
admin, admin, LAAH NJOYO Sylvain, MOULIOM TAPOUH Jean Roger, SAMBA Odette, BINTOU SOUMO Hamadadi, & MOIFO Boniface. (2020). Évaluation comparative des Doses d’Entrées de Surface pour les radiographies du thorax et du rachis lombaire dans trois services de radiologie de Yaounde, Cameroun . Journal Africain d’Imagerie Médicale : Journal En Ligne Et En Version Papier - Printed and Online Open Journal, 12(3). Retrieved from http://jaim-online.net/index.php/jaim/article/view/110

References

  1. 1. Zarghani H, Bahreyni Toossi MT. Local Diagnostic Reference Levels for Some Common Diagnostic X-Ray Examinations in Sabzevar County of Iran. Iran J Med Phys 2018; 15:62-65. 10.22038/ijmp.2017.19211.1237
  2. 2. Škrk D, Zdešar U, Zontar D (2006) Diagnostic reference levels for X-ray examinations in Slovenia. Radiol Oncol 40: 189–195.
  3. 3. Council Directive 97/43/EURATOM. European Union on Health Protection of Individuals against the Dangers of Ionizing Radiation to Medical Exposure. Official Journal of the European Union, 1997, No L 180; vol 40, 22-27
  4. 4. Ongolo-Zogo P, Nguehouo MB, Yomi J et Nko’o Amveme S. Connaissances en matière de radioprotection: enquête auprès des personnels des services hospitaliers de radiodiagnostic, radiothérapie et médecine nucléaire à Yaoundé Cameroun. Radioprotection, 48 1 (2013) 39-49. http://dx.doi.org/10.1051/radiopro/2012017
  5. 5. Samba ON., Fogang RT., Bogning A D, Ekobena AAC, Maffo L M J, Yomi J, Lukong C F. Évaluation de la dose d’irradiation délivrée aux patients lors de la radiographie standard du squelette axial. Afrique SCIENCE. 2015 ; 11(4): 87 - 94 87. ISSN 1813-548X, http://www.afriquescience.info.
  6. 6. Samba ON, Yomi J, Talla RF, Juimo AG, Lukong FC. Local reference dose level evaluation in chest radiography in Yaounde. J Afr Imag Méd 2015; (7), 3: 152-162.
  7. 7. Okeji MC, Udoh BE, Chiaghanam NO. Evaluation of Absorbed dose during Hysterosalpingography in a Nigerian Hospital. European Journal of Scientific Research. 2011). Vol.67 No.1 (2011), pp. 137-139.
  8. 8. Mohamadain, K.E.M., Habbani, F.I. and Ibrahim, S.M. Adult Patient Doses for Chest, Skull and Lumbar Spine Examinations. Open Journal of Radiology. 2015; 5: 44-49. http://dx.doi.org/10.4236/ojrad.2015.51008
  9. 9. Tamboul J, Yousef M, Mokhtar K, Alfaki A, Sulieman A. Assessment of Entrance Surface Dose for the Patients from Common Radiology Examinations in Sudan. Life Sci J 2014; 11(2):164-168]. (ISSN: 1097-8135). http://www.lifesciencesite.com.
  10. 10. Suliman II, Abbas N, Habbani F. Entrance surface doses to patients undergoing selected diagnostic X-ray examinations in Sudan. Radiat Prot Dosimetry. 2007; 123(2): 209-14.
  11. 11. M.A. Halato, Suliman II, Kafi ST, Ahmed AM, Sid Ahamed FA, Ibrahim Z, Suliman MF. Dosimetry for Patients undergoing Radiographic Examinations in Sudan, IX Radiation Physics & protection conference Nasr City – Cairo. Egypt, 15-19, November 2008
  12. 12. Ofori EK, Antwi W K, Arthur L and H. Duah. Comparison of patient radiation dose from chest and lumbar spine X-ray examinations in 10 hospitals in Ghana.
  13. 13. Ogunseyinde AO, Ademiran SAM, Obed RI, Akinlade BI and Ogundare FO. Comparison of entrance surface doses to some X-ray examinations with CEC reference doses. Radiat. Prot. Dosim. 2002; 98: 231 -234.
  14. 14. Obed RI, Ademoh AK, Adewoyin KA and Okunade OA. Doses to patients in routine X-ray examinations of chest, skull, abdomen and pelvis in nine selected hospitals in Nigeria. Research Journal of Medical Sciences. 2007; 1 (4): 209 -214.
  15. 15. Olowookere CJ, Babalola IA, Jibiri NN, Obed RI, Bamidele L, and Ajetumobi EO. “A Preliminary Radiation Dose Audit in some Nigerian Hospitals: Need for Determination of National Diagnostic Reference Levels (NDRLs)”. Pacific Journal of Science and Technology. 2012; 13(1): 487-495.
  16. 16. Teferi S, Admassie D, Worku A, Zewdeneh D. Local diagnostic reference levels for adult postero-anterior (PA) chest X-ray examination in Addis Ababa, Ethiopia. Ethiop MED J. 2010 Jan; 48(1): 49-55.
  17. 17. Nyathi T, Nethwadzi LC, Mabhengu T, Pule ML, Merwe DG. Patient dose audit for patients undergoing six common radiography examinations: Potential dose reference levels. The South African radiographer 2009; 47(2): 9-13.
  18. 18. Gnowe, G., Fouda, H.P., Jéremie, M.A., Pascal, T., & Graobe, B.B. (2019). Assessment of the Local Exposure Level during Adult Chest X-Rays at the Ngaoundere Regional Hospital, Cameroon. Radiology Research and Practice, 2019.
  19. 19. Davies M, McCallum H, White G, Brown G, Helm H. Patient dose audit in diagnostic radiography using custom designed software. Radiography. 1997; 3:317–325.
  20. 20. IRSN. Analyse des données relatives à la mise à jour des niveaux de références diagnostiques en radiologie et en médecine nucléaire. Bilan 2011-2012.PRP-HOM/2014-9.110 pages.
  21. 21. Davies M, McCallum H, White G, Brown G, Helm H. Patient dose audit in diagnostic radiography using custom designed software. Radiography. 1997; 3:317–325.
  22. 22. European Commission. Criteria for Acceptability of Medical Radiological Equipment used in Diagnostic Radiology, Nuclear Medicine and Radiotherapy. Radioprotection N°162. 2012;23 32.
  23. 23. European commission. European guidelines on quality criteria for diagnostic radiography Images 1996
  24. 24. Weatherburn GC, Bryan S, Davies JG. Comparison of Doses for Bedside Examinations of the Chest with Conventional Screen-Film and Computed Radiography: Results of a Randomized Controlled Trial. Radiology. 1 déc 2000; 217(3):707 12.
  25. 25. Muhogora WE, Ahmed NA, Almosabihi A, Alsuwaidi JS, Beganovic A, Ciraj-Bjelac O, et al. Patient doses in radiographic examinations in 12 countries in Asia, Africa and Eastern Europe: Initial results from IAEA projects. AJR. 2008; 190: 1453 – 1461.
  26. 26. Freitas MB, Yoshimura EM. Diagnostic reference levels for the most frequent radiological examinations carried out in Brazil. Rev Panam Salud Publica. 2009;25(2):95–104.
  27. 27. Brennan PC, Nash M. Increasing FFD an effective dose-reducing tool for lateral lumbar spine investigations. Radiography 4,251-259, 1998
  28. 28. Parry RA, Glaze SA, Archer BR. The AAPM/RSNA physics tutorial for residents: typical patient radiation doses in diagnostic radiology. RadioGraphics 1999 ; 19:1289–1302
  29. 29. Compagnone G, Baleni MC, Pagan L, Calzolaio FL, Barozzi L, Bergamini C. Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional screen-film radiography, computed radiography and direct digital radiography. Br J Radiol. 2006 Nov; 79 (947):899-904.
  30. 30. Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H. Dose Reduction in Patients Undergoing Chest Imaging: Digital Amorphous Silicon Flat-Panel Detector Radiography Versus Conventional Film-Screen Radiography and Phosphor-Based Computed Radiography. Am J Roentgenol. 1 oct 2003; 181(4):923 9.
  31. 31. Dilger R, Egan I, Hayek R. Effects of focus film distance (FFD) variation on entrance testicular dose in lumbar-pelvic radiography. Australasian Chiropractic & Osteopathy. 1997;6(1):18-23
  32. 32. Brennan PC, McDonnell S, O'Leary D. Increasing film-focus distance (FFD) reduces radiation dose for x-ray examinations. Radiation protection dosimetry 2004;108(3):263-8.
  33. 33. Karami V, Zabihzadeh M, Shams N, et al. Optimization of radiological protection in pediatric patients undergoing common conventional radiological procedures: Effectiveness of increasing the film to focus distance (FFD). Int J Pediatr 2017; 5:4771-82.